
The Quarterly Magazine for Digital Forensics Practitioners

/ REGULARS
 robservations, 360,
 news, irq & more…

/ INTRODUCING
 Remote Data Collection
 for Forensic Analysis

/ Book Reviews
 Penetration Testers
 Open Source Toolkit

Issue 14 / £14.99 TR Media

01

9 772042 061134

/ FROM THE LAB
 Tarantula Uncovered
 – The Latest Release

CUDA & GPU
FOR SECURITY & FORENSICS

ISSUE 14
FEBRUARY 2013

Mark Osborne takes an in-depth look at the number
crunching capabilities of the Graphics Processing Unit

 Remote Data Collection Penetration Testers
 Open Source Toolkit

 INSIDE
/ Fuzzing Risks for Rich
 HTML Applications
/ The Criminal Connection
/ BlackBerry File Deletion
/ Remote Data Collection

WIN!
A COPY OF BELKASOFT

EVIDENCE CENTRE

DFM14_OFC_Cover - Online.indd 1 21/01/2013 11:09

/ LEAD FEATURE

17

CUDA & GPU FOR
SECURITY & FORENSICS

This article must hold the world record for the
longest time taken to write. Let me explain, in 2008,
fl ushed with success; I had just designed/innovated

a cyber security probe that had been incredibly successful.
It had out performed anything on the market at that time
because it used special custom hardware in conjunction
with a normal Intel based CPU, the special sauce in this
combination was a cooperative processing model where
the Pentium CPU worked in parallel with the FPGA custom
hardware. The CPU instructed the FPGA to make certain
calculations and apply certain fi lters not statically according
to some arcane policy but dynamically as processing
continued. I won’t be as bold to suggest it was AI,
it certainly wasn’t but it could do very necessary things
that other products still struggle to do.

Overly fl ushed by my achievements, I became fascinated
by the use of Graphics Processing Units (GPU) as mini
supercomputers for non-graphic number crunching
applications. Overly taken in by GPU marketing claims, I
attended a week’s intensive course on CUDA programming at
a leading University and then included a GPU in later models
of my probe. I was convinced that hardware assist security
was the way to go. I even persuaded the long-suffering
Editor of this journal to invest in an expensive CUDA capable
PC. I formed my own fi rm with 2 dozen pre-orders on the
books for my probe so I had visions of Champagne &
Caviar. But my involvement with this fi rm can be measured
in nanoseconds due to the EuroCrisis [here’s a joke – how
many Greek investment bankers does it take to fund a new
IT company. Answer: It doesn’t matter as they don’t have
enough money] so I looked elsewhere to follow my weird
dream of cooperative hardware.

Excited by Intel’s’ acquisition of McAfee, I spent hours in
interviews to become their UK Chief Architect. The thinking
being that with Intel’s massive resource in the world of
hardware and with MacAfee’s’ lead in the world of security,
their combined forces must be an endeavour to protect the
world’s information assets with embedded hardware; they
would be just the right people to share my dream, but there
were two big problems:

 • They didn’t [share my dream that is]; and
 • They didn’t like me very much

Exploring the opportunities that CUDA holds for revolutionizing information security.
by Mark Osborne

/ ADVANCED

So it was not till 2012 when I narrowly missed popping my
clogs and required a long period of convalescence after major
surgery that I had the time to pick the article back up. Not bad
nearly 4 years in the writing.

/ Objective
The article may not be as fresh as it could have been, but I have
scanned the Internet and there isn’t that much out there. In this
article, I want to explore the opportunities that CUDA holds for
revolutionizing information security. Back in 2008, I saw that many
security problems could not be solved because of lack of cheap
horsepower. Wirespeed AV and Intrusion Detection Systems (IDS)
were just a couple of the problems looking for an answer.

Without appearing like a catalogue for video card
manufacturers, Table 1 shows the power of the home user/
graphics card range from the leading card. The key number
here is the “Cores” column, processors to you and me.

/ LEAD FEATURE

Model Cores Memory

GeForce GTX 690 3072 2048 MB

GeForce GTX 680 1536 2048 MB

GeForce GTX 670 1344 2048 MB

GeForce GTX 660 Ti 1344 2048MB

GeForce GTX 590 1024 3072MB (1536MB per GPU)

GeForce GTX 580 512 1536 MB

GeForce GTX 570 480 1280 MB

GeForce GTX 560Ti 384 1024 MB

GeForce GTX 560 336 1024 MB

GeForce GTX 480 480 1536 MB

GeForce GTX 470 448 1280 MB

GeForce GTX 465 352 1024 MB

GeForce GTX 460 336 1 GB / 768 MB

GeForce GTX 550 Ti 192 1024 MB

GeForce GTS 450 192 1 GB

GeForce GT 640 384 2048MB

GeForce GT 630 96 512MB or 1024MB

GeForce GT 440 96 512 MB GDDR5

GeForce GT 430 96 1 GB

GeForce GT 620 96 1024MB

GeForce GT 610 48 1024MB

GeForce GT 520 48 1024MB (DDR3)

GeForce 210 16 512 MB

GeForce 8400 GS 8 256 MB

Table 1. Card Comparison

DFM14_17-24_CUDA & GPU.indd 17 26/01/2013 10:32

18

/ LEAD FEATURE

Digital / ForensicS

The basic arrangement of a card showing the all too key bus
speed (this will become clearer later in the article) and the
memory types is shown in Figure 1.

/ The Analysis Framework
For this article I envisaged several typical heavyweight
security functions that might lend themselves to being
more time effi cient written in CUDA as opposed to plain old
“C” (that’s right no Ansi “C” or C90). To provide this “fair”
comparison I will write simple “proof-of-concept” code in both
languages and compare the elapse time for both.

Why elapse time? Well we don’t care about the GPU
processor time, we assume this baby (the GPU for the CUDA)
has been installed solely to run our example code hopefully
hundreds of times faster, this will give us more time at home
with the wife and kids. We would expect that both system and
user time would be considerably less on the host, but this is
not the core objective, which is to prove the hypothesis that
spending £50 on each or key systems in an environment will
yield potentially marvellous benefi ts.

At the end of the article after we have displayed some quite
shocking stats, we will highlight some of the drawbacks of the
CUDA framework.

/ The Scenarios
The three scenarios selected were:

 • A GPU v CPU based fi le checksum calculator. Leading fi le
integrity checkers are programs such as Tripwire and AFICK,
these have become popular again as a result of PCI-DSS.
 • A GPU v CPU based simple version of GREP.
 • A simple rainbow table generator.

/ A Simple GPU/CPU File Checksum Calculator
This was a simple program, it simply read every byte of the fi le
and treating each one as an integer, generated a modulo-11
checksum. This brought back memories, I am sure I remember
such an example program in a famous text by the venerable
Spaf & Garfi nkel.

Both the GPU and CPU function share a routine to read the
data from the fi le and then depending on a switch passed to
the program, it would perform the function either on the GPU
or the CPU. The host function is shown below. It is simplicity
itself, loop through every byte of the fi le record, dividing it by
11 and adding any remainder into a checksum.

Digital / ForensicS

//Host function to generate checksum

//

//read whole buff er and

//generate a Modulo 11

void

Hcalc_check (long *c, int *d, int inx)

{

int ind;

long sum = 0;

for (ind = 0; ind < inx + 1; ind++)

{

sum += c[ind] % 11; // divide by 11, sum remainder

}

//Leave checksum of record

//buff er into host_b[0] array

d[0] = sum;

}

The CUDA version isn’t too diffi cult. The processing units
are organised into threads grouped into blocks to form
an array, that’s just the way it works. Each dispatchable
processing unit can access arrays in this format. By
superimposing this array over the record buffer, each thread
gets its own byte to work on.

The major draw back is that the GPU and CPU can’t share
memory so it has to be transferred to the GPU and back via
the PCI bus. This is achieved by the “cudaMemcpy()” function.

// Kernel that executes on the CUDA device

__global__ void

kernel_cksum (long *a, int *b, int N)

{

int idx = blockIdx.x * blockDim.x + threadIdx.x; // turn

grid into

// a single dimension linear array

int tempsum=0;

if (idx > N)

return;

tempsum = a[idx] % 11; // checksum

// Atomicadd get exclusive control of memory and adds a

num to it

atomicAdd(&b[0], tempsum); // waits until exclusive control

}

// Set up cuda memory & call kernel

void

Dcalc_check (long *c, int *d, int inx)

{

b_h[0] = 0;

// copy host array (*_h) to array on CUDA device (*_d)

cudaMemcpy (a_d, a_h, size, cudaMemcpyHostToDevice);

cudaMemcpy (b_d, b_h, size, cudaMemcpyHostToDevice);

// Do calculation on device

kernel_chsum <<< n_blocks, block_size >>> (a_d, b_d, N);

//

cudaThreadSynchronize();

// Retrieve result from device and store it in host array

cudaMemcpy (b_h, b_d, size ,cudaMemcpyDeviceToHost);

cudaMemcpy (a_h, a_d, size , cudaMemcpyDeviceToHost);

//

}

Figure 1. Basic Card Arrangement

DFM14_17-24_CUDA & GPU.indd 18 26/01/2013 10:32

/ LEAD FEATURE

19

/ Results
The results blew me away and are shown in Figure 3. How could
the CUDA program be so slow? Well there is a fundamental
reason that is due to the inherent design of the architecture:

Lesson 1: GPU memory and processors are fast; one might
believe there is some difference in relative speed but even
if all processes were performed sequentially, this large
difference in elapse times could not be credibly attributed to
processor speed. It isn’t.

Data getting to the GPU must pass over the PCI bus, this
is slow; in fact, because the amount of processing per byte
transferred was so small, no advantage to parallel process
could be utilised. To emphasise this fact, if we add the same
“cudaMemcpy” statements to host CPU code, the host program
delivers slow results that are very similar. (i.e. Where the
average elapse time for CUDA is 26 seconds [the mid data
point], if we add the CUDA “memcopy” code into the host based
code we see a rise from 0.2sec to 22.5sec; practically equal).

/ A GPU v CPU Based Simple Version Of GREP
This program encapsulated the rationale for me looking
at hardware assisted processing. Back in the dark ages, I
made a name for myself in the IDS space. One of the “bread
winners” for me was IDS that couldn’t keep up and needed
tweaking. Mostly, there were real speed restrictions well
below manufacturers’ specs on the throughput capability of
the devices, but that usually wasn’t the problem. The problem
was usually unbounded string searches.

In example, I wrote two versions to look for the word “CAT”
in any fi le. Sorry it is very basic, but I am simple man. The host
code is simple. It reads a fi le. It loops thru the buffer to fi nd
the literal “CAT”, simples!

void host_search()

{

char *p;

char out[10]= “ “;

int cnt = LUMP_SIZE+1;

//

p = h_a ; // h_a contains data to be searched from fi le

// Could have just used strstr but wanted to keep code

similar

//so

// Skip thru fi le fi nding every letter “c”

while ((p = (char *) memchr(p ,h_c[0] ,cnt)) != NULL

)

{

// if the “c” is followed by “at” i.e. cat

// then output and exit

if (strncmp(p ,h_c,3) == 0)

{

strncpy(out,p ,3) ;

printf(“host buff y= %s \n” , out);

exit (0);

}

p++;

}

}

Byte0 Byte1 Byte2 Byte3 ……….. ………. Byte21 Byte22 Byte23 Byte24

(0,0)
Byte0

(0,1)
Byte1

(0,1)
Byte1

(0,3)
Byte3

(0,4)
Byte4

(1,0)
Byte5

(1,1)
Byte6

(1,1)
Byte6

(1,3)
Byte8

(1,4)
Byte9

(2,0)
Byte10

(2,1)
Byte11

(2,1)
Byte11

(2,3)
Byte13

(2,4)
Byte14

(3,0)
Byte15

(3,1)
Byte16

(3,1)
Byte16

(3,3)
Byte18

(3,4)
Byte19

(4,0)
Byte20

(4,1)
Byte21

(4,1)
Byte21

(4,3)
Byte23

(4,4)
Byte24

Figure 2. CUDA Array

Figure 3. Checksum GPU v CPU Results

STEAM PROCESSORS

I ENVISAGED SEVERAL TYPICAL
HEAVYWEIGHT SECURITY

FUNCTIONS THAT MIGHT LEND
ITSELF TO BEING MORE TIME

EFFICIENT WRITTEN IN CUDA AS
OPPOSED TO PLAIN OLD C

DFM14_17-24_CUDA & GPU.indd 19 26/01/2013 10:32

20

/ LEAD FEATURE

Digital / ForensicS

The GPU/CUDA version is less complex. Basically, each
thread is assigned a byte in the record buffer with a different
offset. When the code runs, it checks to see if its byte is “c”.
If it is, the code checks if the next byte is “a”. Lastly it checks
if the 3rd byte is “t”. If any of these criteria isn’t true, it sets a
fl ag and leaves.

///////////////
__global__ void
ss(char *haystack, int *d, char *needle, int needleLen)
{
int startIndex = blockDim.x*blockIdx.x + threadIdx.x;
//
int fMatch = 1;
for (int i=0; i < needleLen; i++)
{
if (haystack[startIndex+i] != needle[i]) fMatch = 0;
}
if (fMatch)
atomicMin(&d[0], startIndex) ;
//

}

/ Results
Less unexpected now, the results of the GPU code was still
disappointing (see Figure 4).

The amount of instructions per “memcopy” are still too
small to show any elapse time improvement but there are
more reasons for the poor performances.

Lesson 2: The fi fty, 250 or 512 processors in your GPU are
designed to run free on its own bit of data. Shared data can
lead to a race condition where multiple processes updating
one byte can corrupt it, because the two processes are using
it at the same time. To avoid that we used the “atomicMIN()”
routine, which locks the fi eld while updating takes place.
Where the “program” effectively is one or two operations, this
means everything is single streamed. In this case, there is no
advantage in using a GPU.

Good GPU code tends to use complex formulae to perform
such mathematical functions to avoid locks, if you come
across the term data reduction, this is what it means.

Lesson 3: GPUs are designed to run serial streams of
instruction. Complex conditions cause what is known as
stream divergence. Effectively, instead of running one set
of commands, which has a branch, the compiler builds two
separate streams bound to two threads. The despatcher on
the GPU dispatches one of the two streams conditionally.
Obviously this is relatively ineffective and slow.

Stream divergence can be avoided by using maths. In the
example above, the following statement could cause divergence:

if (haystack[startIndex+i] != needle[i]) fMatch = 0;

Divergence might be avoided if the following arithmetic was
used to determine if there was a difference between the two
numbers. Something like this might be a good starting place.

fMatch += abs(haystack[startIndex+i] - needle[i]) ;

/ Go Further
Frustrated by my own simplicity, I decide to make it more
processor intensive by making the string search case
insensitive. This means CAT, cat, Cat, CAt and caT all would
match. Below is the CPU based code.

void host_search()

{

char *p; int cnt =0 ;

char out[10]= “ “;

// LUMP_SIZE is buff er length

p = h_a ; // h_a contains data to be searched from fi le

while (cnt < LUMP_SIZE + 1)

{ // h_c contains .cat

if (strncasecmp(p+cnt ,h_c,3) == 0)

{

strncpy(out,p+cnt ,3) ;

printf(“host buff y= %s \n” , out);

break ;

}

cnt++;

}

}

Below is the GPU based code.

//// ss - Search String Cuda Kernel ///////////

__global__ void

ss(char *haystack, int *d, char *needle, int needleLen)

{

int startIndex = blockDim.x*blockIdx.x + threadIdx.x;

uint low_hay, low_needle;

int crounds;

int fMatch = 1;

for (int i=0; i < needleLen; i++)

{

// implement to lower()

low_hay = haystack[startIndex+i] ;

if (low_hay >= ‘A’ && low_hay <= ‘Z’)

low_hay = low_hay - ‘A’ + ‘a’;

// implement tolower()

low_needle = needle[i] ;

if (low_needle >= ‘A’ && low_needle <= ‘Z’)

low_needle = low_needle - ‘A’ + ‘a’;

// Set fl ag if any character doesnt match

if (low_hay != low_needle) fMatch = 0;

}

// store lowest occurrence of match pointer

if (fMatch)

 atomicMin(&d[0], startIndex) ;

}

//////////////

Figure 4. GREP GPU v CPU Results

DFM14_17-24_CUDA & GPU.indd 20 26/01/2013 10:32

22

/ LEAD FEATURE

Digital / ForensicS

Lesson 4: This shows the 4th lesson learnt in using CUDA, it
doesn’t have the full library functions available to normal “C”.
In these examples, we have had to write our own versions of
tolower(), strncasecmp() etc.

Although this was an interesting exercise, the results did
not change much. Using unsophisticated brute-force testing,
we discovered that the GPU began to establish equality
when doing greater than 10000 comparisons on 1500 bytes,
the approximate size of an Ethernet frame. Putting this in
practical terms, the last time I checked a typical IDS rule set
it contained 8000 rules out of which around 5000 having
multiple string searches. This appears to be bigger enough to
justify the GPU.

As previously mentioned, since the inclusion of PCRE based
regular expressions in many IDS rule sets, writers include
them routinely without the proper understanding. A type
PCRE rule can decompose into the equivalent of dozens of
compound conditions. This suggests that GPUs could have a
place in IDS processing. The Gnort Project, a research project
where the PCRE plug-in has been GPU-ised, has suggested
this. This project published signifi cant results. But given the
slow speed of memory movement, involved with transferring
data over the PCI bus, its application for IPS would result in
massive network latency. Except with special hardware, this
would make GPU and IPS a marriage made in hell.

/ Lastly, A Non-Trivial Rainbow Table Generator
A rainbow table is a simple table that contains password
hashes. These can be simply matched with a hash extracted
from an OS, to reduce the time a bad guy gets in.

In this example, I imagined a Unix like password scheme
where our passwords are hashed before they are stored.
As we are security aware, the passwords are appended to a
numeric salt ranging from 000 to 999 and the hashed with
MD5. Also like Unix, we go thru a series of “rounds” of re-
hashing (only in our case we just re-perform the original md5
hash as a simulation, as I like checking the MD5 output in
the table). Given a password of “osborne”, the os (and so our
rainbow table) might store the hashed value of:

000osborne

001osborne

/\/\/\/\/\/\/\/\/

998osborne

999osborne

The CPU code appears below:

mycrack(char *text_string, char *hash_out)

{

int totalLen = 0;

uint c[4];

c[1] = 0, c[2] = 0, c[3] = 0, c[0] = 0;

totalLen = strlen(text_string);

//get the md5 hash of the word

md5_vfy(text_string ,totalLen, &c[0], &c[1], &c[2],

&c[3]);

// put a hex string into hex_out ;

sprint_as_hex (c, hash_out, 16) ;

}

Main()

{

…..excluded loads of general defs and initialisation

char hash_out[32];

// iterate to emulate a bigger table

for (rounds = 0; rounds < 100 ; rounds++)

{

printf(“ r: %i “, rounds);

for (n = 0; n < TOTAL_WORDS ; n++)

{

for (x = 0; x < TOTAL_HASHS ; x++)

{

sprintf (p ,”%03i%s”, x , words[n]);

mycrack(p, hash_out);

memcpy(rainbow [n][x] , hash_out , 32);

}

}//end of 100 rounds

}

The GPU below is simple and shown in two parts.

//GPU kernel

__global__ void mycrack(char *cuda_words, char *cuda_

rainbow)

{

//compute our index number

uint linear_hash_idx = (blockIdx.x*blockDim.x +

threadIdx.x);

uint hash_idx = threadIdx.x;

uint word_idx = blockIdx.x;

char cuda_hash_out[32];

char cuda_salt_n_word[103];

int totalLen = 0;

uint c[4];

c[0] = 0; c[1] = 0; c[2] = 0; c[3] = 0;

char ccc[] = “0123456789”;

int thous, huns, tens, ones;

memset(cuda_salt_n_word,0,103) ;

huns = hash_idx /100 ;

cuda_salt_n_word[00] = ccc[huns] ;

ONE OF THE “BREAD WINNERS”
FOR ME WAS IDS THAT
COULDN’T KEEP UP AND
NEEDED TWEAKING.
MOSTLY, THERE WERE REAL
SPEED RESTRICTIONS WELL
BELOW MANUFACTURERS’
SPECS ON THE THROUGHPUT
CAPABILITY OF THE DEVICES,
BUT THAT USUALLY WASN’T
THE PROBLEM

DFM14_17-24_CUDA & GPU.indd 22 26/01/2013 10:32

/ LEAD FEATURE

23

tens = (hash_idx - (huns *100)) /10 ;

cuda_salt_n_word[01] = ccc[tens] ;

ones = hash_idx %10 ;

cuda_salt_n_word[02] = ccc[ones] ;

memcpy(cuda_salt_n_word+3, cuda_words+(word_idx*32), 32);

totalLen = cuda_strlen((char *) cuda_salt_n_word);

// cuda_salt_n_word[02] = ccc[totalLen %10] ;

memcpy(cuda_rainbow + (linear_hash_idx*32) , cuda_

salt_n_word , 32);

if (totalLen < 0)

{

cuda_salt_n_word[00] = cuda_salt_n_word[01] = cuda_

salt_n_word[02] = ‘!’ ;

return;

}

//get the md5 hash of the word

md5_vfy((unsigned char *) cuda_salt_n_word ,totalLen,

&c[0], &c[1],&c[2],&c[3]);

//sprint_as_hex is a sprint in hex -- puts hash in target

sprint_as_hex ((unsigned char *) c, cuda_hash_out, 16

) ;

memcpy(cuda_rainbow + (linear_hash_idx*32) , cuda_hash_

out , 32);

__syncthreads();

}

The invocation of the GPU Kernel is shown below.

main()

//

…………general setup etc

//

// iterate to emulate a bigger table

for (rounds = 0; rounds < 100 ; rounds++)

{

printf(“ r: %i “, rounds);

cudaMemcpy(cuda_words , words , wordsize ,

cudaMemcpyHostToDevice);

//run the kernel

int xxx = TOTAL_WORDS ;

int yyy = TOTAL_HASHS ;

//run the kernel

dim3 dimGrid(xxx) ;

dim3 dimBlock(yyy) ;

mycrack<<<dimGrid, dimBlock>>>(cuda_words, cuda_

rainbow);

} // end of forced iteration

cudaMemcpy(rainbow, cuda_rainbow , rainbowsize

,cudaMemcpyDeviceToHost);

} //end dummy iteration

/ Results
The results of the GPU code were great. We had a fi xed

dictionary of ten words of variable length. Each of these
generated a thousand table entries (i.e. 000password thru
999password) with associated hashes. To increase the
workload, we varied the number of rounds (to demonstrate a
Unix-like scheme but also allow us to extrapolate a dictionary
of 1000 words). The GPU treated all workload with clear distain.
The results are shown in Figure 5.

At last we had a task that is processor intensive enough.
The GPU’s performance is stunning. We can generate a million
hashes in 5 or so seconds. The CPU takes a similar time to
generate several 1000. This effectively means that many of our
crypto techniques can be rather ineffective.

Take the Unix example, many Linux password fi les and
reasonably recent HP-UX do not separate the hashes in a
separate “shadow” fi le (as the previously mentioned volume
from “Spaff” and Garfi nkel described in the early 1990s) every
user would be able to run a cracker on it. With results like this,
we can extrapolate that with no argument that the cracker
would certainly come up with viable password.

/ Codifying The Selection Of Applications
 To Be GPU-ised
So it is absolutely clear why the GPU’s have not resulted in the
revolution I had hoped for. This is because:

The code cannot simply be recompiled with GPU
directives. Code often needs to be redesigned to operate
at all. Particularly, there is an absence of libraries and most
conventional code would be ineffi cient. This means that there
is likely to be a signifi cant software cost, as redevelopment
would be required.

The PCI bus is a big constraint. To be a useful candidate, the
following must be true:

Time transfer all units between GPU

< Time to complete workload on CPU

Although, this might seem obvious, I must admit at being
very surprised at the slowness of the transfer and just how
nippy the old PC CPU was, but I guess when you look at the
relative bus speeds (as shown below) and account for the
fact that most CUDA programs will have to read data into CPU
based ram and then transfer it to the GPU effectively resulting
in a sum of latency, the results become more explainable
(Figure 6).

There are few things that could be done to minimise, the
impact of this truism. CUDA supports an asynchronous copy
verb with memory pinned into DMA and multiple streams,
which can reduce the latency involved at the cost of complexity.

A real world example of this (if you are sad enough to
have gone thru the source of SSH to establish the root cause
of network latency of fi le transfers) is the SSH client. This
uses two record buffers that are encrypted and transferred
independently in a fl ip-fl op arrangement to reduce wait time.
Yet again, hardly the plug and play solution we were searching
for. This is a natural candidate for such a conversion (i.e. two
streams for each buffer).

Figure 5. MD5 CPU v GPU Results

DFM14_17-24_CUDA & GPU.indd 23 26/01/2013 10:32

24

/ LEAD FEATURE

Digital / ForensicS

Lastly, the impact of thread blocking and stream divergence
means that many applications that are highly conditional
in their nature and cannot be reduced into a mathematical
formulae may remain unsuitable for porting to a GPU, so it is
clear that GPUs are not the zero effort, universal panacea to
all our problems, so where can they make an impact?

/ Good Applications Would Include
Brute forcing password hashes, (as demonstrated above
[and below]) is the dream application for security in a GPU.
Unfortunately it is largely a negative application and is likely to
render ubiquitous controls pointless. For example salting and
complexity of passwords are rendered ineffective in any scheme
where a password hash can be recovered. The GPU does not
need to use dictionary style attacks it can attack a whole key
space of 8 or 10 characters well within the average lunchtime.

Cracking encryption keys using a known text attack. Any
standalone block of text encrypted using a standard algorithm
will be easy prey, again a rather negative application. Finding
MD5 collisions to spoof MD5 based x509 digital certifi cates,
again a malevolent application. Developments on voice
recognition or face recognition have shown some promise.

Applications that would seem to have an unfavourable byte
transfer to processing ratio would seem to be File Integrity
Monitoring. The processing per byte is just too low.

The jury is out regarding IDS but there is obviously some
potential. In fact if you recall it was the work done on a GPU
accelerators for SNORT (1) that I read about while I was
designing FPGA based accelerators for SNORT that triggered

my whole adventure. However, the author fervently believes
that the doubling of memory transfers across the bus makes
IPS diffi cult or impossible for latency reason. In a throw away
comment in the GNORT reference (1) suggests that they are
doing work on reading network data directly into the GPU.
That would certainly impact the prognosis.

An area that I was hopeful that would be productive was AV.
A typically antivirus product has upward of 33,000 signatures. A
GPU could rattle through these comparisons at the speed of light.
The GPU’s are already used in generating signatures; a proof of
concept to develop a GPU based system is described here (2).
Apart from being a great article, it shouts a message I have been
trying to convey for years; AV/IDS/IPS are not primarily there
to identify an attack, they are there to provide assurance that a
packet or program doesn’t contain one. There is a big difference.

Perhaps an application that can really benefi t is Spam
processing on email because SMTP is effectively a store and
forward process.

/ The Real World
Look at “freshmeat” or “sourceforge” and you will see a
bewildering array of password crackers powered by GPU’s. In
Backtrack4, the security testing distro, there are also several.
A representative cross-section of the programs includes:

Hashcat – WPA cracking tool
Pyrit – a another WPA cracking
Multiforcer – a cracker of MD5 , MD4 and NTLM hashes.
Ikescan – a hacker tool for analysing IPSec vpns

If you download the ISO and have a play you can see just
how so fast they go.

So to conclude, using GPU to solve complex muscle
intensive problems instead of rendering the absolute detail of
an AK47 in a “shoot’em” up game is a brilliant evolution. It is a
shame that they can’t be used in more utility functions, at the
moment; their most viable application is cracking passwords
and encryption, effectively an anti-security activity. /

REFERENCES

Gnort project, Giorgos Vasiliadis, Institute of Computer Science

Foundation for Research and Technology Hellas

GPU Gems 3, Chapter 35. Fast Virus Signature Matching on the GPU,

Elizabeth Seamans, Juniper Networks & Thomas Alexander, Polytime.

http.developer.nvidia.com

/ Author Bio
Mark Osborne ran the KPMG security
practice for many years (1993-2003). He
has published several Zero-Day security
vulnerabilities (e.g. Fatajack), and has
also been an expert witness in the “cash-
for-rides” case. Mark has designed the
popular open-source wireless IDS/IPS
(WIDZ), as well as the largest Cyber Security System in Europe.
He is the author of “How To Cheat at Managing Information
Security”, which reached the Amazon.com Top 500.

Figure 6. Relative Bus Speeds

DFM14_17-24_CUDA & GPU.indd 24 26/01/2013 10:32

