
1 Predictive Intruder monitoring and prevention

This article explores the possibilities and the cost savings that could
be gained by integrating IDS, vulnerability scanning and patch
management.

1.1 What is intruder detection

Intrusion Detection systems (IDS) is the burglar alarm of IT security.
In IT security, IDS/IPS is where the action is, So lets spend sometime
on the recent changes to the IDS landscape. You may not have noticed
but networks are getting faster - switched or even encrypted. This has
caused problems particularly for Network IDS (NIDS) as it makes it
harder for the devices to acquire important data and requires the same
device to process the data quicker. Generally, this has resulted in
vendors favoring HIDS (Host IDS) where client IDS software is
installed on each host to be protected. However, the actual users are
often less impressed with HIDS for a number of reasons.

1.2 HIDS or not a HIDS, that is the question

Many HIDS only compare a stored, known correct checksum with a
newly generated checksum of key files to detected changes (known as
state monitoring). The limitation of this technique results is reduced
warning of hacking activity which in-turn provides less time to react.
For example imagine a situation where you detect a hacker by
discovering that a file has been changed in /etc/rc5.d – great you
caught a bad guy when he changed something he shouldn’t have.

But this file almost certainly wouldn’t have been his first choice of
target, what about the dozen attempts to update /etc/shadow,
/etc/passwd and /etc/hosts that he would have tried beforehand - which
your checksum based HIDS failed to detect because the hacker didn’t
manage to change a file. As the point of an IDS is to provide early

warning of hacking, this approach is poor because it only warns you
after the damage is done and an unauthorized change made – too late
for me. Most experts will confirm that state checking tools like TCT
are a superb way of determining what a hacker has done to you when
you are in the recovery stage of your Incident Response process.

Even where the HIDS has superior event data acquisition from using a
kernel mod (i.e. LIDS) or by links into the audit subsystem, users are
complaining that some HIDS adds little over audit systems given the
cost. There is just not enough granularity in the rules without having
to write complicated scripts – it may not be clear to the software
engineers writing these package but administrator logins are frequent
events on most networks. We need to know when an administrator
logs in from a strange workstation or out-of-hours but not every time
he performs a normal job function from his standard work station.
This doesn’t mean that the technology is a lemon; it just means that it
is not as mature as it really should be and currently it works best being
supported by a sensible NIDS deployment. Now that I have just about
finished the WIDZ project, I intend to spend sometime working here.

In fact HIDS have a great potential, they have the ability to directly
access the machine to get patch and inventory information.

2 NIDS in your hair

Or was that Nits, the fact is both have caused some head scratching.
However, most manufacturers haven’t ditched NIDS , but they are
having to work harder to make it work. The overhead of processing
thousands of attack signatures (signature analysis) is huge. When
common media reached speeds of 100Mbits, manufacturers
introduced protocol analysis (looking for things in the right part of the
right packet) instead of checking all packets for all signatures,
appropriate or not (packet greping). This common sense approach has

helped but the emergence of the gigabit network makes congestion
inevitable. However, common sense has never been a strong feature
of our industry so most manufacturers have become fixated with
search for techniques that have a lower resource requirements and
network latency on IDS devices rather than concentrating on more
important features like better detection. One good side effect however
is that it has hastened a move by a few vendors to re-visit anomalous
detection. This means establishing what traffic is not normal on your
network AND that is indicative of a hacker - and then using any
divergence from this baseline to trigger alerts. This will not only
result in better detection but one day the NIDS will be able to use
anomalous detection to isolate a hitherto unknown attack signature
and send details to vendors to be included in IDS& Scanners signature
databases.

Many vendors have poo-poo’ed the concept of anomalous detection
by implying that
1) most networks are too diverse to baseline,
2) training time will be too long and that
3) it will produce too many false positives.

Together, the last two arguments seems bizarre, have these vendors
every used their own products?? Usually, most sites have to spend a
large amount of time tuning the ids and still are left with an
unacceptable level of time-consuming false positives. I have dug out
some of the data I had from the last job I did on the best selling NIDS,
all of the data was False-Positive because there was no hacking
occurring. But from the data, it was clear that most of the problems
occurred from the non-specific nature of the rules. For example, on
this site they had IIS and IPLANET servers so both sets of rules were
enabled. However, this meant that some of the traffic directed
towards the IPLANET server will triggered IIS events. And no the
open-sources-bible thumpers can’t feel smug here either, Even if you

bother (most don’t) to tailor the config of the fabulously flexible Snort
and accurately set the variables $HTTP-SERVER $HTTP-PORTS to
the correct values, the above situation will be true in a multiple web
server environment. The result is that every IIS related MSADC &
Jill attack that is mis-directed to a IPLANET server will result in a
high priority alert.

The situation is still worse with datagrams or context attacks that may
be launched in an initial tcp packet. In this case, Snort will fire an
alert for an attack on server that doesn’t exist. This kind of false
alarm represents the majority of the alerts most IDS produce. A
simple pre and post processor could significantly insure that alerts
were only produced for machine that really existed and that alerts
were of a suitable priority if you really were vulnerability.

Another feature that holds great promise is Snorts’ activate/dynamic.
This feature uses one rule, the activate rule, to define malevolent
traffic. The subsequent dynamic rule can used to log a predefined
number of packets from the original host. This means that after an
attack you have a complete session trace – a feature only available in a
few commercial IDS. But with a bit of fiddling, this can even be used
to set up a basic DEFCON scheme so that your IDS automatically
increases its monitoring levels. Normally, a sensor will run with a low
level of monitoring in-place until the activate rule triggers a more
rigorous set of rules.

Another exciting feature for NIDS is the Crypto-network tap – these
devices act as “bumps-in-the-wire” and allow encrypted traffic, say
SSL to web servers, to be decrypted so that an IDS sensor can access
attack information in clear text. This solves a major problem with
NIDS whilst any security risk is minimized because no Crypto-key
information or decrypted cipher text ever leaves the device. We are
currently experimenting porting an IDS to such a HSM device.

3 Trends in Vulnerability scanning

Look at the numbers in figure 1, over 10 new vulnerabilities reported
each day.

Surely we should check for these vulnerabilities with the same sort of
frequency. Many vendors are providing services that scan for basic
infrastructure exposures on a daily basis. This allows more time and

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1998 1999 2000 2001 2002

Vulnerabilities

Figure 1: Vulnerabilities per year Source Cert/cc

effort to be spent on less frequent more manual intensive application
security testing.

4 Linking scanning with IDS

As more integration occurs between these two tools the combined
value will increase exponentially. Both tools share a database
describing potential vulnerabilities, here alone saving on integration
and maintenance provide opportunity for labour saving. Instead of
maintaining two, we will only need to update one. To this ends, we
are already working on a tool that will link the Nessus Scanner with
the snort IDS.

With some commercial products, we are already able to correlate
vulnerable systems as identified by the scanner with IDS Alerts when
they are attacked. This surely means that we can already produces
software that not only Correlates scanner results, but uses the
information to dynamically raise the priority of any alert based on the
targets sites vulnerability (as determined by the previous nights scan)
– Or even cures the exposures. If only.

4.1 My blue heaven

Imagine a situation where yet another stack overflow exploit is
released, and is estimated to have the capability to devastate all your
production servers.

However, we’re in an ideal world so

1. Automatically, your security control console down loads the
latest CVE information. This will contain machine-readable
pointers to combined scanner/IDS signatures. That night
your scanner scans your network automatically building an
inventory of vulnerable hosts.

2. Then the security consol downloads the patch, and assesses,
based on risk/reliability information stored in the future
format patch whether the patch can be applied automatically.
If it is safe, the patch is applied.

3. In any case your NIDS monitors for malevolent packets
containing the attack signature, if the attack is directed
towards a host that isn’t vulnerable the NIDS will only raise
a minor alert. If it is directed at a vulnerable host, the IDS
will raise a high priority alert.

4. Then the control software will make a decision on whether
the NIDS or HIDS will stop the attack, either using packet
modification, address shunning or TCP-reset.

CVE

Vulnerability
Scanning

Patch &
Inventory
Management

Intrusion
Detection

1.Regular scans identify
all servers plus the O/S &

any vulnerability

2. Inventory is
updated, vulnerability
is confirmed by on-
server daemon &

patch is downloaded

3. Reliability info in CVE is checked and
patch applied

4. False positives
reduced because
IDS understands
Inventory. Alerts

factor in
Vulnerability scan so

big problems get
high priorities

CVE Information will be enhanced, standardised and will be made machine readable
(XML?).

IT will include;
??a definitive signature to verify vulnerability of a device – specific hex-string test

within a specific offset of code
??Attack information for IDS and Vulnerability
??Vulnerable software versions
??Risk/exposure rating
??Patch details
??Patch reliability/safety (i.e. can this be applied without disruption)

Figure 2: Integrate Security Vulnerability management

Much of this depends on better format CVE and Patch/Advisory
unification by most software vendors to providing compatible
information - which will never happen.

4.2 If a jobs worth doing, its worth doing yourself

Based on my experiences with Nimrod and then WIDZ, if you just
write papers about stuff nobody picks it up. If you lay down code, all
the better programmers out there get motivated and build better things.
So this is what I going to build on the NIDS front:

IPTABLES (Modified)
filters packets based on
inventory

INVENTORY

Machine
Readable

SNORT

Only real packets

NMAP

Alerts

On socket

Nessus

Errors

xml

Post processor
+
AMAP

Alerts

IP Traffic on ethernet

To increase throughput and reduce the number of false positives
produced by probes and routing errors:-

1) Nmap is going to be used to produce a machine readable inventory
2) IPTABLES is going to be modified and used as pre-processor

described above. It interprets the machine readable inventory, so
that only messages that are destined for a real (i.e. active)
address/port pair will be processed by the venerable snort. Load
balancing across a number of machines will also be achieved by
this (Did I tell you that my company suddenly found itself with 750
pc’s with nobody to use them)

3) The venerable Snort will process these packets with a typical
business as usually attitude – writing its alerts to a socket.

4) A post processor will pick this up, verify that the address exists,
that the port is active and identify what it is using AMAP.

5) This will be compared to a nightly nessus scan.

If nobody bites and rallies to my support, I might add some HIDS
component linked in by SSH and some form of anomalous heuristics –
who can tell what I’ll do if I get some free time on my hands

